
NASA Contractor Report 189563

ICASE Report No. 91-80

/
J

/

ICASE
EFFECTS OF PARTITIONING AND SCHEDULING

SPARSE MATRIX FACTORIZATION ON

COMMUNICATION AND LOAD BALANCE

Sesh Venugopal

Vijay K. Naik

Contract No. NAS1-18605

October 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

Langley Resesrch Center
Hampton, Virginia 23665-5225

(

.3

I

r-j

0

Lr. _-.

? .?"

r-q

C "',

L.3 '-i_

_4

3

E" -"-

. "4 _ '9

_,. %. L. •

J

Li t _ C

." _ _-._

-J J _)

, _,. C

Effects of Partitioning and Scheduling Sparse

Matrix Factorization on Communication and

Load Balance*

Sesh Venugopal

Dept. of Computer Science

Rutgers University

New Brunswick, NJ 08903

Vijay K. Naik
IBM

T. J. Watson Research Center

Yorktown Heights, NY 10598

Abstract

We present a block-based, automatic partitioning and scheduling method-

ology for sparse matrix factorization on distributed memory systems. Using

experimental results, we analyze this technique for communication and load

imbalance overhead. To study the performance effects, we compare these over-

heads with those obtained from a straightforward "wrap-mapped" column as-

signment scheme. All experimental results were obtained using test sparse

matrices from the HarweU-Boeing data set. The results show that there is a

communication and load balance trade-off. The block-based method results in

lower communication cost whereas the wrap-mapped scheme gives better load

balance.

*This research was partially supported by the National Aeronautics and Space Administration
under NASA contract NAS1-18605 while the first author was in residence at ICASE, Mail Stop

132C, NASA Langley Research Center, Hampton, VA 23665.

1 Introduction

Partitioning and scheduling the parallel execution of large scientific applications on

distributed memory systems is a difficult and time consuming task. If the dependen-

cies involved are unstructured, as in the case of sparse linear systems, then the task

becomes even more complex. Use of naive techniques to extract parallelism often

results in large communication overhead and/or in large load imbalance. To reduce

communication overhead, locality of data must be exploited and to balance the load,

the computations must be evenly distributed at all times. When the data depen-

dencies are non-uniform and unstructured, achieving these two goals simultaneously

is difficult. As a result, in such cases, the overall performance may turn out to be

poor, even if an application has a high degree of extractable parallelism. One possible

way to minimize the overhead is to make use of the structure of the sparse system

which can usually be determined prior to performing the numerical computations.

When direct methods are used to solve the sparse systems, this information in the

form of the structure of the factored matrix is routinely used to reduce computation

and/or storage costs. Recently, this information has also been applied in extracting

parallelism while maintaining low communication and load imbalance costs [5], [6],

[14]. However, in most cases, parallelism has been extracted manually, which tends

to be extremely tedious, error prone, and inflexible. Thus, automation is the key to

successful parallelization of such applications. To summarize, there are two important

issues in the efficient parallelization of sparse matrix based computations:

* Developing technology for the automatic parallelization of the computations.

, Developing a methodology for the extraction of the available parallelism with
nfinimum communication and load imbalance costs.

To address these issues, we have developed an automatic, block-based scheme for par-

titioning and scheduling the computations in factoring a sparse matrix. The scheme

makes use of the structure of the factor and is targeted towards distributed memory

systems. To reduce communication, it takes advantage of locality. However, to main-

rain proper load balance and a high degree of parallelism, the scheme makes use of

an adaptive technique in distributing the computational work.

To demonstrate the usefulness of such a partitioning scheme and to bring out the

performance limitations that are inherent in sparse matrix computations, we compare

the communication overhead and the degree of load balance in the automated block-

based approach with that obtained from a straightforward and widely used column-

based approach. In the latter scheme, computations associated with an entire column

or row are assigned to a processor and the assignment of these columns or rows is

usually done in a "wrap-around" fashion. We refer to this scheme as the wrap-mapping

or wrap scheme. For comparing the performance on practicM applications, we present

results for some of the Harwell-Boeing test matrices.

In the following discussion, it is assumed that the reader is familiar with the standard

terminology used in the context of sparse matrix computations. For an explanation,

see [7],[3].

The organization of the rest of the paper is as follows. In the next section, the

Cholesky factorization is briefly described and some of the terminology used in the

paper is introduced. The partitioning and scheduling strategies that are used for

automation are presented in Section 3. Performance results are described in Section 4

and Section 5 concludes the paper.

2 Cholesky factorization

The partitioning and scheduling methodology is described in this paper assuming

Cholesky factorization as the model numerical method of computation. The Cholesky

algorithm is simple, well understood, and is widely used. Note, however, that the

techniques presented here are applicable to other factoring methods as well. In the

following, we highlight only those aspects of this algorithm that are essential for

describing the partitioner. For details on the Cholesky factorization scheme, see [9].

For the sake of completeness, we first briefly describe the four steps involved in the

direct solution of Ax = b. (For details see, for example, [8].) It is assumed that A

is symmetric, positive definite and that Cholesky factorization is used in computing

the factor L, where A = LL T.

1. Ordering: Find a good ordering of the unknowns for elimination. The ordering

is given by a permutation matrix P. Most often, a "good" ordering implies

one which would lead to a sparse factor and fewer arithmetic operations in the

numerical factorization step.

2. Symbolic Factorization: Determine the sparsity structure of the factor L.

3. Numerical Factorization: Compute L.

4. Triangular Solutions: Using the computed L, solve the triangular systems Lu =

Pb, LTv = u and set x = pTv.

The basic element-level data dependencies in the factorization process are shown in

Figure 1.

row

J

lOW

i

LG_)_ lumn

_.O,J)

..

Figure 1: Inter-element dependencies in Cholesky factorization

In that figure, only the lower triangular part of the matrix to be factored is shown.

Li,j denotes the element in row i and column j. The direction of the arrows indicates

the data flow. Thus, elements Lj,k and Li,k from column k of the factor L are required

in computing element L_,j. L_,j = L_,j - L_,k * Lj,k is the corresponding operation in

the Cholesky factorization. (Initially L_,j is set to A_j.) We refer to this operation as

a single update operation. Note that in computing the final value of Li,j, it must be

updated by all pairs of non-zero elements Lj, k and L_,_, 1 < k < j. Finally, after all

the updates are performed, the element is scaled by the square root of the diagonal

element in that column.

3 Partitioning and scheduling

The partitioning scheme presented here is static in the sense that all the computations

are partitioned before any of the computations are scheduled for execution. For this,

the partitioner takes as an input the structure of the factor for the sparse matrix.

However, the scheme is general and does not have knowledge of any matrix structure

embedded in it.

As stated in the introductory section, the aim of the partitioner and the scheduler

is to reduce communication and at the same time maintain a balanced work load

among processors at all times. To achieve this, wherever possible, data locality is

exploited. This leads to some variation of block-based partitioning; such partitioning

approaches have been proposed in several linear algebra related problems [2], [12].

With blocking, it is possibleto achievea high ratio of computation to communication

per block. In [11], it is shown that for an important class of problems, the block-based

partitioning schemes result in an optimal utilization of the data accessed (and thus

reduce data traffic). Blocking, however, could lead to load imbalance because the

increase in the size of schedulable units results in a loss of flexibility in distributing

work among processors. To avoid this, the partitioner described here partitions the

factored matrix into blocks of varying sizes that can be assigned in an equitable

manner to the processors. It makes use of a heuristic where the block sizes are

subject to adaptive manipulation. In the following we describe the functioning of the

partitioner in some detail.

The partitioning starts with the zero-nonzero structure of the filled sparse matrix

obtained after the symbolic factorization phase has been completed. Blocks of non-

zero areas are identified in the filled matrix. We refer to these as dense blocks. On

occasions, blocks are formed by including small regions that correspond to zeros in

the factored matrix in order to obtain larger blocks. Inclusion of such areas with zero

elements is kept to a minimum. The work in these dense blocks is partitioned into

sub-blocks which are the basic schedulable units. These unit blocks have a regular

shape - each unit block is either a column, a rectangle or a triangle. After all the unit

blocks are identified, the dependencies between these blocks are determined. Finally

the unit blocks are assigned and scheduled on processors.

Thus, the steps involved in the automatic partitioning and scheduling are:

• Identify dense blocks in the symbolic factor.

• Partition each dense block into schedulable unit blocks.

• Generate and store dependency information for the unit blocks.

• Schedule these units on the processors of a message passing system.

• Consolidate the non-local memory access information for each processor so as
to minimize communication overhead.

In the remainder of this section, we will describe the first four steps.

3.1 Identification of dense blocks

To identify the dense blocks, first clusters of columns are determined in the sparse

triangular factor. A cluster is a either a column or a strip of consecutive columns.

If it is a strip, it contains a dense triangular block at the top and (possibly) a set of

off-diagonal dense rectangular blocks. This is illustrated using an example shown in

4

Figure 2. In that figure, non-zero elements in the filled 41 x 41 matrix are indicated

by the dark areas. The matrix corresponds to a 5-point finite element 5 x 5 grid and is

ordered using Liu's multiple minimum degree algorithm [10]. It was generated using

the Sparse Matrix Manipulation System developed at the University of Wisconsin [1].

Figure 2: A 41 x 41 filled matrix.

In Figure 2, notethe following in the lower triangular part. Cluster 1 spans columns

1 and 2 and cluster 2 spans columns 3 and 4. Both clusters 1 and 2 have a three-

element dense triangular block at the diagonal. Cluster 1 has three dense rectangles

below the triangle, each of which is 1 x 2, while cluster 2 has two dense rectangles, the

upper one being 1 x 2 and the lower one being 2 × 2. Clusters 3 through 12 are single

columns starting with cluster 3 at column 5. The last cluster consists of columns 35

through 41. This cluster has one dense triangle and no rectangles below it. Note that

in this illustration we do not consider column 34 as part of the last cluster because

of the zero in row 38 of this column. But this can be over-ridden by allowing some

zeros to be a part of a triangle.

Once the clusters and the triangular and rectangular blocks within each cluster are

identified, the algorithm processes the clusters left to right in the matrix. When a

cluster is processed, each block in the cluster is partitioned into sub-blocks which are

schedulable units. Next, for each unit, the dependencies are determined and stored.

These steps are explained below.

3.2 Partitioning of a block

A duster with a single column is considered to be a schedulable unit and is not

subject to further partitioning. In a multi-column cluster, the triangular block is

partitioned first. In general, the number of partitions of a triangle are determined by

(a) the number of processors that are assigned to the blocks on which the triangle

depends, (b) a certain minimum work requirement per unit sub-block. The first pa-

rameter restricts communication to the group of processors that work on the triangle

and its predecessors. The second parameter is used to ensure a satisfactory ratio of

computation to communication for each unit block and is an architecture dependent

parameter. This parameter may be used to vary block sizes from one cluster to the

next. For the results presented here we use a fixed size - one for all the triangular

block and another for the rectangular blocks. This is referred to as the grain size and

is the minimum number of matrix elements required in each unit block. The grain

size dictates a maximum number of partitions, say Pd. A block is partitioned into at

most Pa equal sized units; at most because it may not always be possible to break up

a block into exactly Pd equal sized units.

\

rll r12

r13 r14

r21 r22 r23

Figure 3: Partitions

Figure 3 illustrates this partitioning. The triangle is partitioned into six parts. One

of the rectangles is partitioned into four parts and the other is partitioned into three

parts.

6

3.3 Identification of dependencies

The dependencies in a single update operation at the element level of Cholesky fac-

torization are shown in Figure 1. However, for allocation and scheduling of the units,

it is necessary to identify the dependencies at the block level. In this step, for each

unit block, the dependencies are determined and the information on the actual data

needed in the update operation is stored. This step also identifies columns or block

units that are independent, i.e., those that are not updated by any other units. To

automate this process, it is necessary to classify the dependencies at the inter-block

level. We have classified these dependencies into ten categories which are enumerated

next. Using this classification and the interval tree structure, the partitioner computes

the dependencies efficiently. The implementation details are given elsewhere.

In the following discussion, a column is represented by its column number in the

matrix, a rectangle is represented by its column extent (c/, cj), cl _< cj and row extent

(Tp, vq), rp _< rq, and a triangle is represented by its row extent (or column extent,

which is the same as the row extent) (ri,rj), ri _< rj.

.

.

°

°

A column updates a column

This forms the base case for the dependencies. A column k updates a column

j if Lj,k is non-zero. (see Figure 1).

A column updates a triangle

Let triangle T's row extent be (rl, r2). A column k, k < rl, updates the triangle

if Li,k is non-zero, rl < i < r2. In Figure 4(a), the non-zero elements of column

k that are involved in the update are in rows il, i2 and i3. The points of

intersection of the dotted lines with each other and of the dotted lines with the

diagonal are the points of triangle T that are updated by column k.

A column updates a rectangle

Let rectangle R's column extent be (cl, c2) and row extent be (vl, v2). A column

k updates this rectangle if it has pairs of non-zero elements Li,k and Lj,k, where

cl < i < c2 and vl < j < v2. In Figure 4(b), the non-zero elements in rows il

and i_ combine with the non-zero elements in rows jl, j2 and j3 tO update a

portion of R. This updated portion is the set of points given by the intersection

of the dotted lines in R's interior.

A triangle updates a rectangle

Let the column extent of rectangle R be (cl, c2) and the column extent of triangle

T be (ca, c4). The triangle updates the rectangle if there is an intersection in

their column extents. In Figure 4(c), the shaded portion of T updates the

shaded portion of R.

5. A triangle and a rectangle update a rectangle

Let rectangle R1 have column extent (el, c2) and row extent (rl,r2) and let

rectangle R2 have column extent (ca, c4) and row extent (ra,r4). Let c2 < ca.

Let the column extent of triangle T be (c5, c6). T combines with R1 to update

R2 if (c1,c2)intersects (c5,c6), (c3, c4)intersects (c5, c6) and (rl,r2)intersects

(ra, r4). In Figure 4(d), the shaded rectangular portion of T combines with the

entire shaded rectangle R1 to update the entire shaded rectangle R2.

6. A rectangle updates a column

Let the row extent of rectangle R be (rl, r2). It updates a column k if rl < k <

r2. In Figure 4(e), the shaded portion of the rectangle between rows k and r2

update the column elements between rows k and r2.

7. Two rectangles update a column

Let rectangle R1 have column extent (cl,c2) and row extent (rl,r2) and let

rectangle R2 have column extent (c3, c4) and row extent (r3,r4). Let r2 < r3.

Then R1 combines with R2 to update a column k if rl < k < r2 and (el, c2)

intersects (c3, ca). In Figure 4(f), the elements of R_ which are in the row k

between the vertical dotted lines combine with the entire shaded rectangle R2

to update the elements between rows r3 and r4 in column k.

8. A rectangle updates a triangle

Let the row extent of rectangle R1 be (rl, r2) and the row extent of triangle T

be (rz, r4). The rectangle updates the triangle if (rl,r2) intersects (rz, r4). In

Figure 4(g), the shaded portion of R updates the shaded portion of T.

9. Two rectangles update a triangle

Let rectangle R_ have column extent (c_,c2) and row extent (rl,r2) and let

rectangle R2 have column extent (c3, c4) and row extent (r3, ra). Let r2 < r3.

Let the row extent of triangle T be (rh,re). Then R1 combines with Rz to

update T if (Cl,C2) intersects (cs,ca) and (rl,r2)intersects (rh, re) and (rz, r4)

intersects (rh, re). In Figure 4(h), the shaded portion of R_ combines with the

entire shaded rectangle R2 to update the shaded rectangular portion of T.

10. Two rectangles update a rectangle

Let rectangle R_ have column extent (c_, c2) and row extent (r_, r2), rectangle R2

have column extent (cz, c4) and row extent (r3, r4) and rectangle Rz have column

extent (c5, ce) and row extent (r_, re). Let r2 < r3, r2 < r5 and c4 < c5. Then R_

combines with R2 to update R3 if (el, c2)intersects (c3, ca) and (rz, ra)intersects

(rh,re) and (r_,r2)intersects (ch,ce). In Figure 4(i), the shaded portion of R1

combines with the shaded portion of Rz to update the shaded part of Rz.

3.4 Scheduling

The scheduling process is split up into two parts: allocating unit blocks to processors

and ordering the computational work within each processor. In this paper, we are

concerned with the first part only and the salient points therein are presented next.

First the independent columns, as identified in the previous step, are allocated to

processors in a wrap-around fashion. The remaining clusters are scanned again from

left to right. If a cluster is a dependent column, the entire column is allocated to a

processor, which is arbitrarily picked from the set of processors which worked on the

column's predecessors. If the cluster is not a column, the unit blocks in the triangular

part are allocated to processors, followed by the unit blocks in each rectangular block,

going top to bottom. For example, in the cluster shown in Figure 3, the six sub-blocks

of the triangle would be allocated first, followed by the four sub-blocks of the rectangle

below it, finishing up with the three sub-blocks of the bottom-most rectangle.

Allocation within a triangle proceeds by first allocating the triangular units from

top to bottom, followed by the rectangular units, going top to bottom and left to

right. In the Figure 3 for instance, the sub-blocks in the triangle would be allocated

in the order tl, t3, t6, t2, t4, ts. A global set of all processors, Pg, is maintained,

with a marker pointing to the first "available" processor. This marker cycles through

the global set in a round-robin fashion and is moved up every time a unit block is

allocated to the currently available processor. Apart from this, a set of processors, P_,

which have been already allocated to some sub-block in the triangle is maintained.

Initially, P_ is empty. The strategy for allocating a processor to a unit rectangle or

unit triangle is the same. First, the predecessors of the unit block are scanned. For

each predecessor, if the processor p which worked on it is not in P_, the unit block

is allocated to p and p is added to P_. If all of the processors which worked on all

the predecessors of the unit block are already in P_, the unit block is allocated to the

currently available processor in Pg and the marker is moved up to the next processor

in Pg.

For allocating the units within a rectangle below the triangle, the choice of processors

is restricted to Pt, where Pt is the set of processors to which the unit blocks in the

triangle are allocated. Since there is a large amount of communication between a tri-

angle and the rectangles below it, this strategy helps in reducing the communication.

First, the processors in set Pt are ordered according to increasing work. Going in

round-robin fashion through Pc, the processors are assigned to the unit blocks in the

rectangle, going top to bottom and left to right within the rectangle. For example,

let processors pl, P2 and p3 be assigned to the unit blocks on the triangle in Figure 3.

Assume that the ordering according to work is such that pl < p2 < p_. Then, in

the first rectangle below the triangle, rtt is allocated to Pl, r12 is allocated to P2, r13

is allocated to p3, r14 is allocated to Pt. The set Pt is sorted again and the above

9

strategy is usedto allocate r21, r22 and r23.

4 Performance

In this section we present results on the performance of the above described partitioner

and scheduler, in terms of the quality of partitioning and allocation that it produces.

To quantify the results, we measure the communication overhead in terms of the total

data traffic generated and the load balance in terms of a factor that measures the

deviation from perfect load balance. We also compare the results with those using

the straightforward column wrap assignment scheme. For this purpose, we have

used some of the representative test matrices from the Harwell-Boeing package [4].

These test matrices were partitioned and the work units were scheduled as described

in the previous section. Using this output, simulations were carried out to get the

performance results presented here.

Application

BUS1138

CANN1072

DWT512

LAP30

LSHP1009

No. of

eqns.

1138

1072

No. of

non-zeros

2596

6758

512 2007

900 4322

1009 3937

No. of

non-zeros

in factor

3304

20512

3786

16697

18268

Description

Symmetric structure of power

system networks

Symmetric pattern from

Cannes, Lucien Marro

Symmetric submarine frame

from Naval Ship Research

and Development Center

Symmetric matrix representing

9-point discretization of the

Laplacian on the unit square w/

Dirichlet boundary conditions

Symmetric matrix from

Alan George's LSHAPE probs.

Table 1: Selected Harwell-Boeing Test Matrices

For all the results presented in this section, the test matrices were ordered using Liu's

modified multiple minimum degree ordering scheme [10]. We used some of the tools

10

from SPARSKIT [13] and the WisconsinSparseMatrix Manipulation System[1] for
converting the test matrices into variousformats, and for ordering and symbolically
factoring the matrices. Table 1describesthe Harwell-Boeingtest matriceswhichwere
usedin our experiments.

In the following, we first quantify the communication and work load distribution

aspects of the partitioning schemes. Note that here we are concerned with the quality

of the partitioner/scheduler in distributing the work among the processors and hence

do not take into account data dependency delays. In practice, the total execution may

be affected by the dependency delays as well. However, if the number of processors

is relatively small compared to the number of schedulable units, then the allocation

scheme described here provides enough parallelism to keep the idle time to a minimum.

The communication cost is parameterized by the total data traffic generated in the

system and the mean data traffic per processor. The data traffic is defined as a count

of M1 the non-local data accesses. Accessing a single non-local element constitutes a

unit data traffic irrespective of the location from where it is fetched. Once a data

element is fetched, that element is stored locally and subsequent usage of that element

in the local computations does not add to the data traffic. The total data traffic in

the system is the sum of the data accesses by all the processors in the system. This

figure represents the volume of the data that must be transmitted by the system

during the entire factorization step.

The work load distribution of a partitioning scheme is characterized as follows. The

computation cost of updating an element of the matrix by a pair of off-diagonal

elements is assumed to be two units; updating the element by the diagonal element is

assumed to cost one unit. The computational work assigned to a processor is the sum

of the computation costs of all the elements assigned to that processor. The quality

of the work load distribution for a partitioning scheme is measured in terms of the

load imbalance resulting from the assignment of the work to the processors. The load

imbalance factor is defined as,

A=(Wm_-W_,e).N
I/_tOt

where Wtot is the total work, N is the number of processors, W,,_e = Wto,/N is the

average work and W,,,_ is the maximum work assigned to any processor. Note that

when the load is perfectly distributed, W,,_ is W_, and A is zero. The load imbalance

factor can be related to the efficiency e, which is the ratio of speedup to number of

processors, where speedup is the ratio of sequential time to parallel time. In the case

of zero idle times due to dependency delays, the parallel time is simply the amount

of computational work in the processor with the maximum work. The efficiency can

then be expressed as,

e --

W,,,_ * N W,_x

11

which givesus

W,_ax - W_,_ 1
= = - - 1

Wtot e

Table 2 gives the communication traffic in the block scheme for two cases respectively:

when the grain size is 4 and when the grain size is 25.

Appl. P TotM Mean

g=4 g=25 g=4 g=25

4 1335 1194 334 298

BUS 16 1818 1567 114 98

32 1910 1649 60 103

4 47545 40716 11886 10179

CANN 16 138453 80334 8653 5021

32 171965 89042 5374 2783

4 5336 3768 1334 942

DWT 16 10328 5482 645 342

32 11305 5950 353 185

4 38424 29382 9606 7346

LAP 16 100012 44738 6251 2796

32 113717 48863 3554 1527

4 42044 29899 10511 7475

LSHP 16 106973 57773 6686 3611

32 127612 60243 3988 1883

Table 2: Block mapping communication.

Recall that the grain size is the minimum number of elements in any triangular or

rectangular partition. In both cases, total communication increases with the number

of processors for all the test problems. However, when the grain size is increased from

4 to 25, there is a significant reduction in communication. For instance, in the LAP30

problem, the g = 4 and g = 25 columns for total communication in table 2 show that

there is more than 50% reduction in the total communication for p = 16 and p = 32.

This is due to the fact that as the block size increases, more work is done in each

block with a lot of re-use of data.

Table 3 describes the work distribution in the block scheme for grain sizes 4 and 25.

In contrast to the reduction in communication with higher grain size, in most cases,

there is an increase in load imbalance. Furthermore, the load imbalance factor A

increases, in general, with the number of processors, as well.

12

Overall, the larger the grain size, the smaller is the communication, at the cost of

larger load imbalance. If the application is run on a system with high communication

cost as compared to computation cost, the block-based partitioning can give good

performance i.e. the savings in communication will be more than offset the disad-

vantage of load imbalance. Also, the load balance can be improved by using more

sophisticated strategies to allocate blocks to processors.

Appl.

BUS

CANN

DWT

LAP

LSHP

Procs. Work Distribution

Mean A

g=4 g=25

4 2791 0.77 0.8

16 698 3.59 3.59

32 349 6.3 6.3

4 151460 0.07 0.122

16 37865 0.13 0.62

32 18932 0.38 1.26

4 11701 0.17 0.18

16 2925 1.14 1.37

32 1462 1.48 3.67

4 108644 0.12 0.16

16 27161 0.13 1.13

32 13581 0.48 2.9

4 125392 0.06 0.24

16 31348 0.25 0.74

32 15674 0.24 2.04

Table 3: Block mapping work distribution.

Apart from grain size, another parameter used in the tests was the minimum cluster

width. For instance, if the minimum cluster width is 4, no strip of columns less than

four columns wide is acceptable as a cluster - it is broken up into individual columns.

The larger the minimum width acceptable, the fewer number of non-single-column

clusters there are. For any problem, if the cluster width is set high enough, we end

up with all single columns. The results of table 2 and table 3 were obtained using a
minimum cluster width of four.

Table 4 shows the variation of communication and load distribution with minimum

cluster width for LAP30. The table shows an increase in communication when the

width goes from 2 to 4 and then a decrease when the width goes to 8. Load imbalance

shows a complementary behavior. It decreases when the width goes from 2 from 4

and then increases when the width goes from 4 to 8. The cluster width has to go in

step with the grain size. If the cluster width is too small compared to the grain size,

13

a large number of skinny clusters would be formed towards the left of the matrix.

The blocks would not have enough matrix elements to take advantage of reduction in

communication offered by the large grain size.

Width P

4

2 16

32

4

4 16

32

4

8 16

32

Communication Work Distr.

Total Mean Mean

38936 9734 108644 0.03

96235 6015 27161 0.167

111519 3485 13580 0.54

38424 9606 108644 0.i2

100012 6251 27161 0.13

113717 3554 13580 0.48

32569 8142 108644 0.62

88408 5526 27161 1.35

101725 3179 13580 2.3

Table 4: Variation with width for LAP30, g = 4.

Table 5 presents the results for the wrap-mapping case. The immediately noticeable

property is the consistently uniform load distribution, as seen by the A column. How-

ever, a smaller grain size in the block scheme gives a two-fold advantage of decrease

in communication without too much load imbalance as compared to wrap-mapping.

For instance, consider the CANN1072 problem with 32 processors. For a grain size

of four, the block case provides a 28% saving in communication in going from wrap

mapping to the block scheme while the load imbalance factor goes from 0.14 to 0.38,

whereas when the grain size is 25, the savings in communication over wrap-mapping

is 63% while the load imbalance factor goes from 0.14 to 1.26.

5 Conclusions

In this paper, we have described a block based, automatic partitioning and scheduhng

scheme for factoring sparse matrices on message passing systems. The primary focus

is towards automating the process so that the tedious task of manual parallelization

is kept to a minimum. The partitioner makes use of data locality to reduce communi-

cation overhead and at the same time attempts to provide the necessary flexibility to

the scheduler in manipulating the work allocation so that the load remains balanced.

We have used the example of Cholesky factorization to describe the methodology.

However, it can very easily be adapted to other factoring methods used in sparse

matrix computations. In fact, it can be generalized to computations that can be

14

Appl.

BUS

CANN

DWT

LAP

LSHP

1

4

16

32

1

4

16

32

1

4

16

32

1

4

16

32

1

4

16

32

P Communication

Total Mean

0 0

2485 621

3705 231

3832 120

0 0

52363 13090

171764 10735

239646 7489

0 0

7599 1900

17867 1117

20990 656

0 0

42663 10665

133720 8357

177625 5551

0 0

46347 11586

146322 9145

192977 6031

Work Distr.

Mean A

11164 0

2791 0.02

698 0.12

349 0.35

605840 0

151460 0.01

37865 0.05

18932 0.14

46804 0

11701 0.02

2925 0.26

1462 0.32

434577 0

108644 0.01

27161 0.06

13580 0.11

501570 0

125392 0.01

31348 0.09

15674 0.24

Table 5: Wrap mapping.

15

represented as directed acyclic graphs with sufficient information prior to performing

the computations.

To analyze the effects on the performance of the partitioning and scheduling tech-

nique used, we have compared the communication overhead in the form of total data

traffic with that obtained from an implementation where a straightforward column

wrap scheme is used. Five representative test matrices from the Harwell-Boeing pack-

age were used for this purpose. The comparison shows that the block-based scheme

results in a significant reduction in the communication overhead as compared to the

wrap-mapping scheme. This is in agreement with our motivation for blocking. On the

other hand, the block method results in more load imbalance. Wrap-mappings usu-

ally lead to processors communicating with a large number of other processors leading

to a large amount of data traffic and possibly to hot-spots. However, in block-based

schemes, most of the communication among blocks occur within a cluster and hence

can mostly be confined to small groups of processors. Although the increased load

imbalance is a serious issue, the provision of the parameters such as the grain size and

the cluster widths allows one to minimize the load imbalance for particular applica-

tions. Further study of the structure of the sparse matrices is required to optimize

these parameters for individual applications. Moreover, in real applications factoring

is only a part of the overall solution of the system and other computations such as

triangular solves can provide additional flexibility in the balancing the load which is

not taken into account here. Finally, more sophisticated scheduling strategies could

be used to improve performance. Thus, for systems such as message passing archi-

tectures, where communication overhead is much more expensive than computation,

automated, block-based methods such as the one described here may prove to be

better alternatives.

Acknowledgements

We would like to thank Bob Voigt and Joel Saltz at ICASE for reading the report

carefully and making suggestions to improve its presentation.

References

[1] F. L. Alvarado, The Sparse Matrix Manipulation System Users Manual. Tech-

nical Report, University of Wisconsin, Madison, 1990.

[2] E. Anderson and Y. Sand, Solving Sparse Triangular Linear Systems on Parallel

Computers. CSRD Report No. 794, Center for Supercomputing Development,

University of Illinois, 1988.

16

[3] I. S.Duff, A. M. Erisman, and J. K. Reid, Direct Methodsfor SparseMatrices.
Oxford SciencePublications, ClarendonPress,1986.

[4] I. S. Duff, R. Grimes, and J. Lewis, SparseMatrix TestProblems. ACM Trans-
actions on Mathematical Software,Vol. 15,No. 1, pp. 1-14,1989.

[5] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving

Problems on Concurrent Processors: Vol. 1 - General Techniques and Regular

Problems. Prentice Hall, 1988.

[6] G. A. Geist and E. Ng, Task Scheduling for Parallel Sparse Cholesky Factoriza-

tion. Int. Journal of Parallel Programming, Vol. 18, pp. 291-314, 1989.

[7] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite

Systems. Prentice-Hall, 1981.

[8] A. George, M. Heath, J. W. Liu, and E. Ng, Solution of Sparse Positive Definite

Systems on a Hypercube. Journal of Computational and Applied Math., Vol. 27,

pp. 129-156, 1989.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations. The Johns Hopkins

University Press, 1983.

[10] J. W. H. Liu, Modification of Minimum Degree by Multiple Elimination. ACM

Transactions on Mathematical Software, Vol. 11, 1985, pp. 141-153.

[11] V. Naik and M. Patrick, Data Traffic Reduction Schemes for Cholesky Fac-

torization on Asynchronous Multiprocessor Systems. Proceedings of the 1989

International Conference on Supercomputing, ACM, Crete, Greece, 1989. Also

available as IBM Research Report RC 14500, 1989.

[12] R. Schreiber and J. J. Dongarra, Automatic Blocking of Nested Loops. Technical

Report CS-90-108, Computer Science Department, University of Tennessee, 1990.

[13] Y. Saad, SPARSKIT: a Basic Tool Kit for Sparse Matrix Computations. Tech-

nical Report 90-20, RIACS, NASA Ames Research Center, 1990.

[14] P. Sadayappan and S. K. Rao, Communication Reduction for Distributed Sparse

Matrix Factorization on a Processor Mesh. Proceedings of Supercomputing'89,

pp. 371-379, 1989.

17

\ k
k

cl c2

c3

cl c2

(a) (b) (c)

_c6

c! c2 c3 o4

r2"_

c3 o4

(d) (e) (_

....... r3

¢2

\

r2 i"" ".

c3 o4 _ 05

(g) (h) (i)

Figure 4: Dependencies

18

I Form Approve@
REPORT DOCUMENTATION PAGE OMBJvoo_o4-o,_8

Pubh_ reoor_nq burtfen for _hl_coiiect_On Of _nforrnatron ,s e_t_atea to average _ hour oer resPovse _nc}uding the ¢irne for revlewmg Instruc_rons. searching ex_stCngdaCa source_.
gathe?,ng and 'naln_a_nlng _h_clara neecJecl, and cornl31etlngan(_ fewer,rig tt_ecollec_lon of _nlorrnatlon Send cornrnen_s cecjarcling this burden estlma_e or an_ Uther aspect of th_s

! ¢ollectlon o_ _ntormatlon. ,n_lucJ_ng$uggE_1On_ for reOuclng _hls Duroen to Wa_hlngton Hea_c_uarlers Ser_*ces. Dlcectorale for In_ormatlon Operations and Reporls. 12]5 Jefferson
Davi_ Higt_wav. Subte 12134 A̧rhngton. V_ 22202-4302. and to tr, e Office of Managemen_ ariel Budge_. Paperwo_'_ Recluctlon Project (0704-0 I_.8). Washlngtan. DC 20503

1. AGENCY USE ONLY (Leave blank) :2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1991 Contractor Re_ort
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

EFFECTS OF PARTITIONING AND SCHEDLrLING SPARSE MATRIX

FACTORIZATION ON COMMUNICATION AND LOAD BALANCE

6. AUTHOR(S)

Sesh Venugopal

Vijay K. Naik

7. PERFORMINGORGANIZATION NAME(S) AND ADDRESSIES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

1'1. SUPPLEMENTARY NOTES

NASI-18605

505-90-52-01

8. PERFORMINGORGANIZATION
REPORTNUMBER

ICASE Report No. 91-80

10. SPONSORING / MONITORING

AGENCY REPORTNUMBER

NASA CR-189563

ICASE Report No. 91-80

Langley Technical Monitor: Michael F. Card

Final Report

1'2a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

To appear in Proceedings of

Supercomputlng 1991.

12b. DISTRIBUTION CODE

13. ABSTRACT(Maxlmum200words)

We present a block-based, automatic partitioning and scheduling methodology for

sparse matrix factorlzation on distributed memory systems. Using experimental re-

sults, we analyze thls technique for communication and load imbalance overhead.

To study the performance effects, we compare these overheads wlth those obtained

from a straightforward "wrap-mapped" column assignment scheme. All experimental

results were obtained using test sparse matrices from the Harwell-Boeing data set.

The results show that there is a communication and load balance trade-off. The

block-based method results in lower communication cost whereas the wrap-mapped

scheme gives better load balance.

14.SUBJECT TERMS

load balancing; sparse matrices; partitioning; communication

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18, SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

15. NUMBER 6F PAGES

20

16. PRICE CODE

A03

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Standard Form 298 CRev 2-89)
Prescrtl:ed Oy ANSI Std __:]9-18
298 lg2

NASA-I_mgI_, 1991

